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1. Application Introduction

In this section, an algorithm called Metabolitics [18] is introduced. Metabolitics is an algorithm
developed by our team based in İstanbul Technical University Bioinformatics Laboratories.
This algorithm performs systems-level analysis of metabolic pathways based on metabolite
concentrations obtained from mass spectrometric data. Since it became evident that the
phenotype of many diseases is directly related to metabolite levels in the body [1-3], a
metabolic analysis on a patient’s sample seems to be a promising diagnostic method. Several
studies have tried to quantify metabolite measurements and perform pathway analysis (e.g,
[4-5]). And in most cases, scores are assigned to the pathways and are fit into machine learning
models which can then be used to predict whether an individual has a particular disease or not.
However, most of these studies assume that pathways are independent and therefore, do not
account for the interrelationship between pathways. The method employed in Metabolitics
considers that pathways are part of a bigger network and therefore performs analysis in a
holistic fashion. The first version of Metabolitics makes use of the Recon2 data model which
contains 5324 metabolites and 7785 reactions and was compared to the state of the art
algorithms Pathifier [6] and Paradigm [7]. Some limitations of the previous Metabolitics[8] is
that it relies on a version of Recon that does not cover all metabolites and reactions. Also,
despite the large amount of metabolites present in the recon model, only a few metabolites (
less than 150) could be mapped to the recon model due to insufficient name mappings in our
mapping function. We believe that including more metabolites in the analysis can improve the
insights gotten from the analysis and the classification accuracy. Therefore, the Recon3D model
which contains more metabolites (5835) and reactions (10600) is used. Our team aims to use
the scikit-learn machine learning library to experiment with different machine learning
algorithms in order to develop the best solution for applying machine learning on metabolic
analytic results obtained by Metabolitics. These results, once fit in classifiers, can be able to
determine if the subject has a particular disease or not. However, the applications of machine
learning in the medical field are unlike any other. It is expected for the model to be highly
sensitive and specific as well as to be able to generalize on different data distributions. Also,
the unavailability of sufficient dataset makes it very hard to evaluate these models. With
regards to this, The mean sensitivity and Specificity evaluation metrics and a stratified k-fold
cross validation strategy are used to evaluate the final model.

2. Project Current Status Assessment

This project, as always, is aimed at coupling machine learning algorithms with metabolomics
analysis algorithms for the end purpose of achieving the possibility of fast medical diagnosis
from metabolic data. In the initial draft, it was mentioned that one of the major challenges in
pushing through with this implementation is the bias that may result in low count of mapped
metabolites. It was planned to increase the number of mapped metabolites by cross checking
the Recon models, checking any case sensitive errors and finding databases that could provide
synonyms to the given metabolite names and then try to map the synonyms. However, no
synonyms database were found that match names in the Recon model. Also, despite trying to
combine different Recon files (Recon2 and Recon3D), and solving minimal mismatches, only
an additional 9 metabolites names were mapped from our dataset; thus making an increase from
115 mapped metabolites to 124 mapped mapped metabolites. Alternative solutions to increase
the number of mapped metabolites is by using approximate matching algorithms such as those
mentioned in [22]. However, these algorithms may result in more falsely mapped metabolites.
For this reason, we decided to focus efforts on improving the machine learning models, with
hopes that the data will be improved in the future. This means that effort is now focused on
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output of Metaboltics, such as data normalization, feature selection algorithms, using different
classifiers, solving of class imbalance and using a proper model evaluation strategy.

3. Algorithms and Artificial Intelligence Model

The Metabolitics pipeline employs both statistical, unsupervised and supervised algorithms at
three main levels namely; diff score computation (reaction level diff scores and pathway level
diff scores), feature selection for classification task and finally supervised machine learning.
Figure 1 below shows a summary of our analysis pipeline.

Figure 1: Metabolitics Analysis pipeline

3.1 Diff score computation
Metabolitics performs a flux variability analysis (FVA) [8] on metabolite measurements
obtained for a single individual to obtain a personalized analysis. First, the metabolite
measurements are scaled to a smaller range of values compared to those obtained by various
mass spectrometric techniques using a standard scaler algorithm. Then a concentration fold
change is computed from the scaled metabolites as seen in equation 1 below.

(1)𝑚
𝑓𝑐

 = 𝑙𝑜𝑔(𝑚𝑐) −  𝑙𝑜𝑔(µ
𝑚
ℎ𝑒𝑎𝑙𝑡ℎ𝑦)  

Where, and are the scaled metabolite concentrations and the average metabolite𝑚𝑐 µ
𝑚
ℎ𝑒𝑎𝑙𝑡ℎ𝑦

concentration over healthy samples, respectively. The concentration fold changes are then𝑚
𝑓𝑐

used to compute the reaction level diff scores through FVA. In our analysis, metabolites are
partitioned amongst reactions and reactions amongst pathways according to the Recon [9] data
model. Metabolites belonging to a particular reaction are participants in that reaction according
to their stoichiometric coefficients and as such, reaction diff scores obtained through FVA carry
information that might be correlated to the disease. To be able to make meaning out of these
diff scores, reaction level diff scores are converted to pathway level diff scores by averaging the
top k significant reactions over a given pathway. The degree of significance of a reaction is
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determined by using the ANOVA [10] algorithm. Both reaction and pathway scores are used
separately as features to fit machine learning models and the results are compared.

3.2 Feature Selection
Due to the high dimensionality of the features (diff scores), there is a need for feature selection
in order to boost the performance of the classification models that are used. The dimensionality
reduction algorithms [11] tried for feature selection are PCA, LowVarianceThresholding and
truncated SVD, SelectFromModel, and ANOVA. Forward Selection (FS) and Backward
Elimination (BE) feature selection algorithms were not used because they were too
computationally costly.

● Principal Component Analysis (PCA): This is a method that is used to represent
multidimensional data into a few visualizable dimensions while retaining as much
information as possible [19]. To optimize PCA, different values for the number of
components are experimented on.

● LowVarianceThresholding: This method is used for simply removing features that
don't have enough variance across the data samples. Such features do not contribute to
any information and may be redundant. Redundant features may cause a model to
overfit. Changing the threshold value allowed for the optimization of the algorithm

● Truncated Singular Value Decomposition (SVD): SVD is similar to PCA and is used
to decompose a matrix in several useful components [20]. SVD is used as a feature
selection algorithm to decompose many features (10600 in our case) to a few features
that carry almost the same information as the entire set of features. Similar to PCA,
different values for the number of components are experimented on to optimze SVD.

● SelectFromModel: This is a feature selection method that makes use of another
machine learning model in selecting features. The model is trained on the dataset and
based on the weights assigned to the different features, a set of features is selected. This
algorithm is optimized by using different selector models such as support vector
classifiers, random forest, logistic regression, gradient boosting classifier, and so on.

● Analysis of Variance (ANOVA): This is a technique used to select statistically
significant features amongst 2 or more population groups [21]. In our case, we have the
cancer group and the healthy group. This works by analyzing the level of variance
between samples from both groups. The top k-features are selected and the k varied to
obtain optimal results.

3.3 Machine Learning
The purpose of extending Metabolitics with machine learning models is to be able to predict
the disease status of an individual using the diffs scores obtained from their metabolic analysis.
As a case study, labeled breast cancer data is mined from the metabolomics workbench
database [12]. Therefore, by using metabolite measurements from patients, Metabolitics can
predict if a patient has breast cancer or not. The classification algorithms tried are
MLPClassifier, SVC, RandomForestClassifier, XGBClassifier, GradientBoostingClassifier,
KNeighborsClassifier, LogisticRegression, DecisionTreeClassifier, AdaBoostClassifier and
Ensemble Voting. Hyper-parameters are tuned for each of these models and the models are
evaluated using the f1-score matrix and a k-fold cross validation strategy. A 10-fold validation
was performed on 211 samples. Figure 2 below depicts the machine learning pipeline used in
our research.
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Figure 2. Steps from Data Processing to Evaluation of Final Model

3.3.1. Data Preprocessing
The data preprocessing steps are covered by the Metabolitics algorithm. As explained in section
3.1, the metabolites concentrations are scaled user sklearn standard scaler, then fold changes

) are computed by subtracting the mean metabolite concentration from each metabolite in(𝑚
𝑓𝑐

each sample as seen in equation 1. Metabolic analysis is performed on these metabolite fold
changes to obtain reaction level changes (reaction diff scores) and pathway changes (pathway
diff scores). These diff scores are used for machine learning models. The data is retained in list
format format, where each entry in the list represents a data sample and each sample is a python
diction of reaction or pathway names mapped to their respective diff scores. The labels on the
other hand are in list format where breast cancer group are labeled “c” and control group are
labeled “healthy”. This data format is compatible with sklearn machine learning pipeline.

3.3.2 Model Selection and Optimization
To select from among the different classifiers and feature selection methods, all classifiers are
trained with each feature selection method (mentioned above) applied. Default parameters for
both classifiers and feature selection methods are used for this step. From this, the best
combination of feature selection algorithms is associated with each classifier as will be shown
in section 5. below. The presence or absence of normalization in the pipeline is experimented in
each case and the best criteria are taken into consideration. Next, each feature selection
algorithm is fine-tuned on the classifier it was associated with and then the corresponding
classifier’s parameters are fine-tuned using the appropriate feature selection method. Thus, the
best results are obtained for each classifier and the best five out nine classifiers are selected for
an additional ensemble model building. Ensemble algorithms are known for increasing the
accuracy of machine learning models since more than one model is involved in decision
making. The best model between the top five models and the ensemble model is selected as the
final model.
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3.3.3 Model Evaluation
A cross 10-fold stratified cross validation strategy is used all along. However, for evaluation of
the final model, the cross validation is customized such that all the evaluation is done on an
equal number of samples from each class in each fold. Table 1 below shows how the data split
is done.

Table1. Customized K-fold Cross Validation

Fold 1 Fold 2 Fold 3 *** Fold 9 Fold 10 Total Train

Split 1
Test
18 class 1
18 class 2

7 class 1
13 class 2

7 class 1
13 class 2

7 class 1
13 class 2

2 class 1
13 class 2

58 class 1
117 class 2

Split 2
7 class 1
13 class 2

Test
18 class 1
18 class 2

7 class 1
13 class 2

2 class 1
13 class 2

7 class 1
13 class 2

58 class 1
117 class 2

Split 3
7 class 1
13 class 2

7 class 1
13 class 2

Test
18 class 1
18 class 2

7 class 1
13 class 2

7 class 1
13 class 2

58 class 1
117 class 2

*
*
*

Split 9
7 class 1
13 class 2

2 class 1
13 class 2

7 class 1
13 class 2

Test
18 class 1
18 class 2

7 class 1
13 class 2

58 class 1
117 class 2

Split 10
2 class 1
13 class 2

7 class 1
13 class 2

7 class 1
13 class 2

7 class 1
13 class 2

Test
18 class 1
18 class 2

58 class 1
117 class 2

For each data split (10), the dataset is split into 10 equal segments (folds). The splitting is done
separately for each class to make sure that each fold contains the same number of class 1, and
the same number of class 2, except for the test fold which will retain any remaining samples
after an 10 division is made, since the number of samples for each class may not be a multiple
of 10. For each split, a fold becomes the test set while the remaining 9 folds are used for
training. In case the number of cancer and non-cancer samples in a given test set are not exactly
equal, one (backup fold) from the other 9 folds is used to balance the test set. The test folds are
highlighted in gray on the table, the backup fold in blue and any other entry on a given row
becomes part of the training set. In the cancer dataset used, there are 135 samples with cancer
and 76 samples with no cancer. Therefore each fold contains 7 cancer samples and 13
non-cancer samples. The test set contains 13 cancer samples and 18 normal samples. So, 5
samples are taken from the backup fold to make 18 cancer samples thus having a test size of 36
samples and a train size of 175 for each validation. The average test score from each split is
considered as the actual validation. Also, the standard deviation of test scores is computed to
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evaluate how the model generalizes on different split data distributions. The matrices of
evaluation used are F1-score, and the mean sensitivity and specificity.

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 =  2 * 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 * 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃
𝑇𝑃 + 𝐹𝑃

𝑟𝑒𝑐𝑎𝑙𝑙(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁  

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  𝑇𝑁
𝑇𝑁 + 𝐹𝑃

𝑀𝑒𝑎𝑛
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦&𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

=  2*𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦*𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦
𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

● Precision: the total number of true positives (TP) divided by the total number of true
positives plus false positives (FP). It measures how well the model predicts on positive
samples.

● Recall (Sensitivity): the total number of true positives divided by the total number of
true positives plus false negatives (FN). It is the ability to correctly identify the disease
class.

● Specificity: the total number of true negatives divided by the total number of true
negatives plus false positives. It is the ability to correctly identify the non-disease class.

● True Positives: These are samples that belong to the disease group and are predicted as
disease.

● True Negatives: These are samples do belong to the control (healthy) group and are
predicted as healthy

● False Positives: These are samples that belong to the control group but are predicted as
disease.

● False Negatives: These are samples that belong to the disease group but are predicted
as healthy.

2.4 Hardware compatibility

The feature selection and machine learning steps can be done on basically any windows or
linux based system. On a 64-bit Ubuntu 22.04.6 LTS, the processes finish in a few seconds.
However, model optimization steps take a lot of time and require a computer with more power
to run faster. Also, the FVA step is an under determined step that requires the computation of a
large systems matrix and optimization of a system of equations, the process is relatively very
slow and can take hours. The FVA step requires a solver to speed things up and we use IBM
CPLEX optimization solver. Despite using CPLEX, the diff score computation process can take
up to 2-3 hours on a local PC and uses excessive CPU power. Therefore, using a server with
multiple cores is advisable. Our team uses the UHEM Sariyer servers of İstanbul Technical
University with SSH to perform a faster analysis.
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4. Originality

Mass spectrometers (devices used to separate patients' metabolomics from the taken biofluids
or tissues) are becoming cheaper as days pass by. Therefore, if success is achieved by our
Metabolitics algorithm at predicting the disease phenotype very accurately, it will result in the
development of very fast and cheap diagnostic kits. Whence, the patient’s biofluid is measured
by mass spectrometers and analyzed by our algorithm which simultaneously will perform a
diagnosis. Any algorithm that performs metabolic analysis could also be used, but since they do
not account for the interrelationship between pathways, there will be explicability issues in
regard to how they work. Metabolitics[18] in its novelty, analyzes metabolites and pathways by
considering that pathways are part of an even bigger network. The Metabolitics[18] analysis
can reveal biomarkers in metabolic networks. For instance, it was inferred from metabolomic
analysis that asparagine synthase activity increases in breast cancer patients as compared to
normal patients. Due to these insights that Metabolitics[18] can generate, having a database of
the disease profiles based on metabolomic analysis is one of the team’s goals. For this, data is
mined from the Metabolomics Workbench and for any available disease, metabolic analysis is
performed. The database for Metabolitics[18] is another project carried out by a different group
of students in the İTÜ Bioinformatics Labs and Databases organization. Collaborating them
will make Metabolitics[18] the top successful metabolic analysis projects in Turkey with its
uniqueness and provide more accurate results than the state of art algorithms Pathifier [6] and
Paradigm [7] in the world. Also, the machine learning steps followed in Figure 2 above, most
especially the cross validation strategy are both novel machine learning methodologies
developed by our team.

5. Results and Review

Figure 3. Comparıson of machine learning models based on their maximum scores from each
feature selection algorithm
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Figure 4. Comparıson of Standard Scaling Performance 9 Classifiers 6 Feature Selection
Methods

Table 2. Machine Learning Performance with Recon3D (f1-score)

Models No Feature
Selection

(%)

Feature Selection(FS) Tuned Model
Parameters

(%)FS Method Scores (%)

AdaBoost Classifier 93.8 SelectFromModel 96.7 ± 4.3 W.I.P

Decision Tree Classifier 91.5 VarianceThreshold 94.8 ± 5.0 W.I.P

Logistic Regression 94.3 PCA 92.4 ± 6.5 W.I.P

Random Forest Classifier 93.3 SelectFromModel 96.7 ± 4.3 W.I.P

SVC 92.5 SelectFromModel 96.7 ± 4.3 95.7  ± 2.6

Neural Network 91.5 SelectFromModel 94.8 ± 5.0 90.5  ± 4.2

XGB Classifier 95.2 VarianceThreshold 96.7 ± 4.3 W.I.P

K Neighbors Classifier 86.3 TruncatedSVD 93.3 ± 7.1 W.I.P

Gradient Boosting Classifier 93.8 SelectFromModel 96.7 ± 4.3 W.I.P
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Table 3. Machine Learning Performance with Recon2 using Reaction Diff Scores (f1-score)

Models Original Paper Results (%) New Results (%)

Mean score Std score Mean score Std score

AdaBoost Classifier 88.5 5.6 95.7 -

Decision Tree Classifier 86.5 5.8 91.5 -

Logistic Regression 89.9 4.6 94.3 -

Random Forest 89.0 5.2 94.3 -

SVC 90.4 4.7 92.9 -

Neural Network 86.9 5.3 92.9 -

Table 4. Evaluation of Ensemble Machine Learning Models (f1-scores)

Ensemble Models Results (%)

Mean score Std. score

AdaBoost Classifier, Logistic Regression, XGBClassifier 94.8 4.5

AdaBoost Classifier, Logistic Regression, Random Forest Classifier 95.7 4.5

AdaBoost Classifier, Logistic Regression, Gradient Boosting Classifier 95.3 4.3

AdaBoost Classifier, XGB Classifier, Random Forest Classifier 94.8 4.5

AdaBoost Classifier, XGB Classifier, Gradient Boosting Classifier 95.3 4.2

AdaBoost Classifier, Random Forest Classifier, Gradient Boosting Classifier 95.3 4.2

Logistic Regression, XGB Classifier, Random Forest Classifier 95.8 4.4

Logistic Regression, XGB Classifier, Gradient Boosting Classifier 95.3 4.2

LogisticRegression, Random Forest Classifier, Gradient Boosting Classifier 95.8 4.4

XGB Classifier, Random Forest Classifier, Gradient Boosting Classifier WIP WIP

The figures and tables above show our machine learning results so far. Figure 3 above shows
the best performance of each of the 9 models after different feature selection algorithms were
implemented. This shows that the AdaBoosting classifier has the best model performance.
Figure 4 on the other hand, shows the effects of applying normalization (scaling the values to a
normal distribution with zero mean and unit variance, in other words z-score standardization)
on the dataset. Usually, normalization leads to better model performances, but because
Metabolitics performs its own normalization of diffs scores, further normalization leads to
worse scores in all models as shown in Figure 4. After optimizing each model separately (only
Neural Network and SVC models are optimized with: {'hidden_layer_sizes': (100,),
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'learning_rate': 'constant', 'activation': 'tanh', 'solver': 'sgd', 'alpha': 0.05}, {'C': 0.1, 'gamma': 1,
'kernel': 'poly'} hyperparameters respectively shown in Table 2 and Table 3), the five best
performing models were AdaBoost Classifier, Logistic Regression, XGB Classifier, Random
Forest and Gradient Boosting Classifier. These models were ensemble and a list of
combinations of three models was generated and each combination was used as a parameter to
finetune the voting classifier. Also, the weight of each classifier, as well as giving priorities to
specific classifiers, were fine tuned. The completed fine tuning results (mean f1-scores and
standard deviation scores) should be in Table 4. More so, in Table 2, the best feature selection
algorithm for each classifier is determined and these feature selection algorithms are fine tuned
and this is seen to boost the performance of almost all the models. Table 3 on the other hand
shows the performance of our models without optimization compared with the initial results of
Metabolitics that were run on the Recon2 data model. Obviously the results have been
improved for each model. All models will be optimized and compared again with the initial and
state of the art performances.

Since the optimization part needs an excessive amount of computational resources, there are
some parts which are not completed yet. These parts are shown as W.I.P (Work in Progress in
the tables above). We used UHEM servers for the Python scripts for machine learning as well.
They are still running as we write this report.
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